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We discuss some consequences of assuming that two different non-linear model 
equations, and real turbulence are nearly Gaussian. It is supposed when neces- 
sary that the process is driven and it is supposed that the processes have become 
statistically stationary. These problems are discussed from the viewpoint of the 
Wiener-Hermite expansion for non-linear, nearly Gaussian processes. Expected 
equilibria forms are related to corresponding expressions obtained from the zero- 
fourth-cumulant assumption. The spectrum for Burgers’ model and for in- 
compressible fluid flow problems is found from this viewpoint t o  be E N 1%-2. 

The kinematical properties leading to such spectra are discussed. It is noted, 
as has been remarked earlier, that this spectrum is characteristic of flows with 
near discontinuities. A conjecture is offered concerning how these discontinui- 
ties are related to Gaussianity. 

1. Introduction 
We shall discuss some consequences of assuming that : (1) model turbulence, 

and (2) real turbulence is nearly Gaussian and in some form of equilibrium. 
We shall concentrate on two model equations: ( la)  the three-mode model, 
(1  b )  the Burgers’ model equation. The real fluid Navier-Stokes incompressible 
equations will be considered, the order of presentation being ( 1  a), (2) and (1 b) .  
The Cameron-Martin-Wiener representation (sometimes called the Wiener or 
Wiener-Hermite representation) will be brieff y reviewed. We follow a parallel 
treatment for each of these three sets of equations. It will be found, h s t  of all, 
that the energy equation in each one of the three cases involves a transfer term 
which is non-zero only when the process has non-Gaussian parts, as is well known. 
Then, we take the derivative of the energy equation in each one of these cases 
and note that by using the equations of motion in the evaluation of the deriva- 
tive of the transfer function, we obtain a fourth-order moment in each case. 
If we now suppose that the process is nearly normal, we can replace the fourth 
moment by products of the second moments following a treatment very similar 
to that of a zero-fourth-cumulant approximation. I n  the past this approxi- 
mation was used to evaluate the time development ofprocesses. When the initial 
state of the system is far from its equilibrium form, it has been found that such a 
truncation is inadequate. However, here we shall look for equilibrium forms, for 
example, forms such that the time derivative of the transfer function vanishes. 
When we do so we find the known condition for equilibrium for the three-mode 
model; secondly, the known equilibrium spectrum for Burgers’ model, i.e. 
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E( k )  proportional to  Ic-2. Finally, for the Navier-Stokes equation proceeding in 
the way just described, we find an equilibrium spectrum E ( k )  - also (as has 
been shown previously). We discuss the kinematical characteristics of processes 
involving real fluids with such spect,ra. I n  particular it is noted, as observed 
much earlier by Townsend, that some flows with near discontinuities jn the 
velocity functions have spectra like k2. 

In  most practical problems involving turbulence, one is faced with statis- 
tically inhomogeneous turbulence, which is frequently driven and is approxi- 
mately in statistical equilibrium. The driving source is very often found in 
large-scale effects deriving their energy from the mean flow. For example, we 
point to the existence of turbulence in the lower atmosphere which is driven by 
wind shear in that region. Another important application lies in problems in- 
volving turbulent wakes. In  such applications we find the turbulence driven by 
large eddies which couple into the mean shear flow and derive their energy from 
that flow. 

We shall here replace the large-scale energy sources by an equivalent forcing 
term both in model and real turbulence. We suppose that the process has con- 
tinued long enough so that it is statistically stationary (in a statistically in- 
homogeneous problem the forcing term may vary with position). It is easy to  
generalize the random process expansion for such problems (see Meecham & 
Jeng 1968, $11). Recently, Saffman (1968) has used this kind of stationary 
expansion to deal with turbulent diffusion, and has obtained some very prornising 
results in this way. 

2. Review of Cameron-Martin-Wiener functionals 
The functionals provide a useful representation for nearly Gaussian processes. 

The use of these functionals in the examination of non-linear stochastic problems 
is presented more fully elsewhere (see Wiener 1958; Cameron & Martin 1947; 
Imamura, Meecham & Siege1 1965). It will be useful, however, to review some of 
the salient characteristics of such expansions here. For this purpose we use only 
scalar functions of a scalar variable x. Generalizations are given in the references 
for vector functions of vector arguments. The expansion is based on a(x ) ,  the 
white noise process. The a represents a set of functions with the properties 

plus further moment equations expressing the condition that a be Gaussian. 
The process is statistically independent from one point, that is from one value of 
x, to another. The singular set of functions a(x) can be used to represent a random 
function u ( x )  when integrated with a suitable regular, non-random weighting 
function K(x) .  

Since a is Gaussian and independent from point to point, u will be Gaussian 
a t  all points. Further, the use of a difference argument guarantees that u will be 

u(x) = 1 K ( x  - x’) a(x’) dx’. (2.3) 
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statistically homogeneous. To represent non-Gaussian characteristics of u one 
uses polynomial combinations of the ideal random function. They are construc- 
ted in such a manner that they are statistically orthogonal. For the first two 
such functionals we have, 

(2.4) 

(2.5) 

(2.6) 

H(O)(x) = I, 

H(3)(~1, x2, x3)  = a(xl) a(x2)  a(xJ - a(xl)  W2 - x 3 )  - 4x2)  S(x3 - xl) 

W ) ( x )  = a(%). 
H(2)(x1, x2) = a(xl) a(%,) - 6(xl - x 2 ) ,  

-4x3 )  4x1-xz). 

We see that the H(Qare symmetric in their multiple arguments and using (2.1) 
and (2.2) and corresponding higher moment relations, 

(H(OH(j)) = 0 (i + j ) ;  

I also (H@)H(O)) = 1, 

(H‘l’(Xl)H‘”(X2)) = S(X1 - x2), 
(H(2)(~1, x ~ ) H ( ~ ) ( x ~ ,  xq)) = 6 ( ~ 1 - ~ 3 )  S ( X ~ - X ~ )  + ~ ( x , - x , )  ~ ( x Z - X ~ ) .  

Expansions of random functions in terms of these functionals can be made 
(and can be shown to be complete). Consider a random function u(x) .  We write, 
including second-order terms, 

U ( X )  = J ’K(1)(~-~l )H(’ ) (~ l )d~l+J’~K(z) (~-22 ,  x - x 3 )  H@)(X,,X~)~X~~X~, (2.7) 

where we have to determine the non-random kernels K(%sing a dynamic equation 
obeyed by u. We note, because of the symmetry of H“, that the K(”can be assumed 
to be symmetric in their arguments without loss of generality. 

3. The three-mode model 
Kraichnan (1963) has discussed a three-mode model [also considered by Orszag 

& Bissonnette (1967)l. The model is one involving three discrete processes 
as follows : 

d X i ( t )  
= A,%j(:i(t) x&), (3.11 ~- 

at 

where i, j, k take on the values 1, 2, 3 and are distinct, and where the Ai are 
constants whose sum is zero. It is known that this system possesses an equili- 
brium solution such that each random variable xi is Gaussian at a given time 
and independent of the other two random variables. The joint characteristics 
in time are not Gaussian. The method for treating equilibrium, nearly Gaussian 
processes can be demonstrated for this simple model. We assume the process 
has become statistically stationary. Multiply (3.1) by xz(t) and average to find, 

(3.2) 

with 1, m and n equal to 1, 2, 3 and distinct. If the xi are now nearly Gaussian, the 
right side is small, and if exactly Gaussian the moment has zero derivative, as it 

(d(x.xl)/dt)  = A i ( ~ z ~ i ~ k )  + A~(x~x,x,), 
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must if the process is stationary. Differentiate again and substitute for deriva- 
tives in the right side using (3.1), 

(d2ldtZ) (x& = Ai{Al(X, x, X) xp) + A j (x2 xk x p / J  + A ,  (x, xj xixl )) 

+ A,{Ai(xj xk xm 5,) + Am(xixn "1 x,) + A n  (xi xm "'1 x,,, ) I .  (3.3) 

Suppose that (3.3) vanishes (because of stationarity) and that xi are Gaussian. 

(3.4) 
A solution then is 

(xi X I )  = (zt ) 4, 
together with the condition 

A,(x5)(x~)+A,(x~)(s:)+A,(x~)(x~) = 0. 

(From (3.4) we conclude that xi are statistically independent of one another.) 
These are the known conditions for stationarity (see Orszag & Bissonnette 
1967). Further, this process, xi, gives all moments stationary as said, and is the 
exact stationary solution. 

This stationary problem has been solved by Doi & Imamura (1969) using a 
time-dependent Wiener process. A brief discussion of this solution will be helpful 
in elucidating points of importance in more complicated problems later. The 
fact that while the Wiener representation of the type discussed here is coniplete 
for quite general random processes, it is not unique. Discussions of appropriate 
so-called ' measure preserving transformations ' on the representation have been 
presented elsewhere (see Meecham 1969). It is possible to  represent a Gaussian 
process either by a single term in the expansion of type (2.7) or by a very large 
number of terms. The process described above, which is a stationary solution of 
(3.  I ) ,  in fact is an example of a time-transforming process. The xi are Gaussian 
a t  any given time, but if they are expanded a t  later times in terms of the white 
noise process appropriate a t  the given time, one finds that the series of terms 
becomes progressively more slowly converging. Alternatively, one may use a 
time-transforming white noise process in such a way that the xi are always 
represented by a single term in the stochastic expansion. Doi & Imamura (1 969) 
have solved the problem represented by (3.1) in this way. They find 

where the Hi functions of time are given by 

with 

It is remembered that there is no summation convention in these expressions. 
I n  this solution pi are constant. The Hi here consists of three discrete, indepen- 

dent Gaussian processes with unit variance. They are analogous to the slightly 
more general white noise processes presented in (2.4). It is important that the 
process Hi(t) remain a white-noise process. The conditions necessary to guarantee 
that this be so amount to  requiring that the time derivatives of all moments of 
Hi vanish. These conditions are discussed in detail by Doi & Imamura (1969). 
The time correlation, even for this simple discrete random process problem, 
presents some difficulty. Thus it would be necessary to  integrate an ensemble 
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of His  using (3.6) in order to obtain these correlations. It happens that the system 
of equations (3.1), or equivalently (3.6), possesses a closed-form solution so that it 
is possible to obtain the time characteristics in closed form. It is noted that the 
solution (3.6) is quite similar to the equations of motion themselves, (3.1). 
There is, however, the important simplification that, in (3.6), the statistics of 
the random process are known (that is Gaussian), whereas the process in (3.1) 
has much more general statistical characteristics in the general case. 

4. Stationary, driven turbulence 
We develop the equations for stationary driven turbulence in an incompres- 

sible fluid, relying on previous work for some of the details (see Meecham & Jeng 
1968). Define the Fourier transform of the velocity field 

u(k,t) = Seik*'u(r,t)dr 

(and simila.rly for f below). The Fourier transform of the incompressible 
Navier-Stokes equation is (using the summation convention and with time- 
dependence implicit) 

([a/at]+ vk2)ui(k) = ( i / 2 )  (&~)-~<jl(k)Ju?(k- k')u,(k')dk +f,(k), (4.1) 

with 

and 

and 

The given (solenoidal) forcing term f will be assumed to be statistically stationary 
and homogeneous, Gaussian, and confined to large-scale effects. That is, it is 
supposed that f vanishes for lc larger than an energy-containing wave-number 
k,,. The first two random processes in the Cameron-Martin-Wiener representa- 

Hil)(r), tion are (analogous to (2.4)) 

with the covariance property 

(Hi!)(rl) Hi1 p2))  = 8&rl-r2). 

We suppose that the turbulence is statistically stationary [it is known that 
certain necessary conditions must be imposed for stationarity, see Saffman 
(1968)l; and that it is (at least locally) statistically homogeneous and isotropic. 
We suppose convergence sufficiently rapid so that the random field can be ade- 
quately represented by just the first two terms in the nearly normal expansion 
at  a given instant. 

There is considerable experimental evidence that fully developed (decaying) 
turbulence is nearly normal in many important characteristics; in particular 
the even moments are related to one another as they would be for a Gaussian 
process. In  figure 1 the comparison of some measured fourth-order moments, 
with what they would have been had the process been Gaussian, are presented 
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[taken from the work of Frenkiel & Klebanoff (1967n)l. Those authors present 
considerably more data than is shown here, all leading to the conclusion that 
the even moments are related (to within experimental error) as they would have 
been had the process been Gaussian. Odd moments are considerably smaller, of 
order a few per cent in relative value [see, for instance, Frenkiel & Klebanoff 
(1967b)l. Frenkiel & Blebanoff also show that a single lowest order term in a 
kind of generalized Gram-Charlier expansion is sufficient t o  obtain higher order 
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FIGURE 1. Measured correlation coefficients of fourth order compared with the assump- 
tion of Gaussian probability density distribution of turbulent velocities (from Frenkiel 8: 
Klebanoff 1 9 6 7 ~ ) .  

odd moments from lower order odd moments. This must be taken as striking 
evidence of near-Gaussianity. Single point probability distributions of fully 
developed turbulence are known to be very nearly Gaussian as well [see, for 
instance, Batchelor (1953)]. Further, extensive data supporting the assumption 
that the turbulent process is nearly normal in certain important characteristics 
have been presented by Van Atta, Yen & Yeh (1970). On the basis of these 
data, we assume there is a Wiener representation such that the higher order terms 
for the velocity fluctuation are smaller than the first term. Continuing with the 
representation we have for the velocity field, 

ui(r, t )  = uil) + ui2) = /Kii)(r - rl) H$)(r,)dr, 

(4.3) 
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h(r, t )  = 1 F&)(r - rl) Hkl)(r,)drl 

186 

+ JJ”J’$b(r - rl, r - r2)&#1, r2) dr1dr2. (4.4) 

We suppose that our representation is such that we can use the manifestly statis- 
tically homogeneous form, involving kernels that are spatial functions of the 
difference variable; as stated we assume second-order terms are small. 

Returning to (4.1) we construct the usual energy equation. Multiply by the 
velocity a t  a second wave-number (and the same time), symmetrize and average 
to find, 

[(W + 6’4 + k31 (udkl)u&k2)) = WW3G,dkl)  
x J”(U.Jk1- k”/3(k’)Ui(k,))dk’ + (f,(kl)Uj(kZ)) 
+same, interchange subscripts i ,  j and variables k,, k,. (4.5) 

For homogeneous processes we know that 

(ui(kl)uj(k2)) N E k1 +k2 = 0 

N 0,  otherwise, 

where V is the volume of the turbulence; similar relations hold for other 
moments. 

We follow Proudman & Reid (1954) closely in what follows and find 

E( k) = [( 27~)’ V]-1k2(~i(k)~;  (k) ) , 

( [ a p t ]  + Z v P ) E ( k )  = T(k)  +X(k) ,  

(4.7) 

(4.8) 

(4.9) 

(4.10) 

and for isotropic processes (4.5) becomes 

where 
T(k)  = ( i / 2 v ) ( 2 ~ ) - 5 k 2 ~ , p ( k ) J ” ( ~ ~ ( k -  k’)up(k’)ui( - k))dk’+ c.c., 

S ( k )  = [S~2v]-1kz[(fi(k)~t(k)) + c.c.]. 

Here C.C. stands for the complex conjugate of a preceding term. 
From the properties of the representation (4.3) we know that to lowest order 

in the non-Gaussian part of the process triple moments like those in (4.9) are pro- 
portional to u(~). Using stationarity we see from (4.8) 

T ( k )  = - X(k) + 2vk2E(k). (4.11) 

Consider the time derivative of the third-order moment. Take the derivative 
of (4.9), use (4.1) and statistical isotropy to find 

P ( k )  = ( + ~ ) k ~ J ” ( Q / k ~ k ’ ~ k ’ ~ ~ )  (2[k2(k”2-  3k’2) - - k’2)2] d(k, k‘, k”) 
+ 2 l ~ ” ~ ( k ” ~  - k2)  @k’, k”, k) - k’ ’2Qq(k ,  k’, k”)}dk’, (4.12) 

where and Y are generating scalars for the triple velocity correlation at three 
points (see Proudman & Reid 1954). For (4.12) we have the additional definitions 

Q == k4 + k‘4 + k’’4 - 2k2k’2 - 2k’2k”2 - 2k’’2k2 (4.13) 

and k+k’+k”  = 0. (4.14) 

To this point we have made no truncation assumption. 
To find the triple correlation scalars 0 and ’€” we would construct from (4.1) 

the equation relating third- to fourth-order moments. If we again suppose that 
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second-order (non-Gaussian) terms are small, we find essentially the zero-fourth- 
cumulant-result of Proudman & Reid, 

- v(k2+k'2+k"2)UI'+Ys. 

The approximation sign stands for the assumption that the fourth-order moments 
needed here are approximately what they would be for a Gaussian process. 
Here, QS and Ys are generating scalars for the triple correlation of two velocities 
with the force f .  We shall not need these quantities in detail, in the discussion, 
and merely note that to lowest order they are proportional to the non-Gaussian 
part of u or f and vanish for k out of the energy range. 

Now suppose we substitute (4.15) in (4.12). For large Reynolds numbers and 
for k large enough to be out of the energy range (so the source terms vanish) 
we have for a nearly Gaussian, stationary process 

0 = (&)P k2k,3k,,"2[k2(k"- ~ 3k'2) - (k"2- k'"7 &(k, k', k") 
+2k"2(k"2-'k2) &(k', k", k) )dk ' ,  (4.16) 

S Q  
witth (4.17) 

For all values of k this is known (see Tatsumi 1960) to have the singular solution 
E N Ic-2. The sum of integrals, (4.16), is convergent for this spectrum. In the 
physical case, this spectrum would be cut off at  the low wave-number end. 

It is known that for a one-dimensional process k2 is the high-frequency spec- 
trum which is characteristic of near-discontinuities in the flow. It is easy to show 
that this is also the case for some three-dimensional flows. Real turbulent flows 
certainly exhibit near-discontinuities and might be supposed to have an energy 
spectrum range with a k-2 behaviour. Indeed early measurements showed ap- 
proximately this behaviour (see Dryden 1938). 

It is known that Gaussian processes do not have discontinuities of this type. 
One plausible view might be that the dynamics develop slip discontinuities; 
such discontinuities require that the different Fourier components have phase 
coherence. This coherence is then lost as the flow proceeds, leaving a kP2 spectrum. 

Previous work with the zero-fourth-cumulant approximation involving the 
integration of (4.8), (4.12) and (4.15) without the source terms, has produced 
poor results (see Ogura 1963). Concerning this, first, the initial spectra (exponen- 
tial forms were used) were probably far from equilibrium values and resulted in 
the process becoming far from Gaussian during the integration time. Thus the 
central approximation (4.15) was violated. Furthermore, we saw in 5 3 that even 
for a process which is nearly Gaussian, we may expect that a given initial represen- 
tation will not remain rapidly convergent for much later times. At least we saw 
in $ 3  that this was the case for the simplified three-mode problem. We may 
reasonably expect a similar behaviour in the more complicated fluid problem 
discussed here. Thus it is necessary in order to retain rapid convergence, that a 
time-dependent noise process be used. Although the approximation (4.15) 
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may be adequate for nearly Gaussian processes initially, still if that equation is 
integrated the implication is that the function Q, is represented adequately at 
later times by the initial representation. This will often not be the case and con- 
sequently the approximation (4.15) will not be fulfilled even for processes which 
remain nearly Gaussian. 

Doi 85 Imamura (1969) use a time-dependent Wiener process to solve a (non- 
forced inviscid turbulence) problem of the general type discussed here. They find 
a solution analogous to that discussed for the three-mode problem in $3.  The 
solution is the familiar equi-partition one, wherein E N k2. This process is a 
(singular) exact solution of the inviscid equations of motion for non-forced 
turbulence, and invokes a Wiener process which transforms in time in a way 
analogous to that for the three-mode problem (see (3.6)). 

5. Stationary, driven Burgers’s model turbulence 
Burgers’ model will be treated here in a way analogous to that used in $4 

for the incompressible Navier-Stokes equation (see Meecham & Su 1969). 
The transform used is (time again implicit) 

J -w 

and the same for the forcing term. 
The Burgers’ equation is 

au a Z u  a 
& w + u -  ax = v-+f(x) ,  ax2  

with the transform 

u(k‘ )u (k -k ‘ )dk ‘ -  vkZu(k)+f(k) .  (5.3) 

The energy equation is constructed as before, with analogous definitions 

( i + 2 v k 2 ) E ( k )  = T ( k ) + X ( k ) ,  15.4) 

with (see Reid 1956) T(k)  = kJ @(k, k’)dk’,  (5.5) 

where 0 is a transform of the triple velocity correlation. 
Numerical experiments show that when the forcing term is Gaussian even 

moments are related as for a Gaussian process. I n  figure 2 the results of such an 
experiment are shown (Jeng 1969). We obtain from the zero-fourth-cumulant 
(sometimes called quasi-normal) approximation 

6 g kE(k’)E(k”) +k’E(k”)E(k) + k”E(k)E(k‘) - v(k2+ k”2)@ + QS, (5.6) 

with k + k ‘ + V  = 0. 

Reasoning as in $ 4  we have in place of (4.16) and (4.17) 

(5.7) 
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This has the singular solution E - k2. As remarked earlier this spectrum is 
characteristic of a velocity field with jumps (shocks) and is known to be the 
correct result for the large wave-number part of the energy spectrum for this 
problem (see Jeng 1969). Remarks in 5 4 about discontinuities and Gaussianity 
apply liere as well. 

I I I I I 
0 1 2 3 4 5 

Y l L  

FIGURE 2. The figure shows a numerical experiment for Burgers’ model turbulence. 
The process is driven by a Gaussian forcing term and is a t  equilibrium. The measured 
fourth-ordcr velocity moment is compared with what it would be for a Gaussian process. 
Here L is the scale for the force (from Jeng 1969). ( u ~ u ’ ~ ) :  ---, measured directly; 
-, using quasi-normal assumption. R e  = 50, 100 realizations. 
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